Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Linear hydrogen-bonded molecular tapes in the cocrystals of squaric acid with 4,4'-dipyridylacetylene and 1,2-bis(4-pyridyl)ethylene

Md. Badruz Zaman, ${ }^{\text {a }}{ }^{\text {+ Masaaki Tomura }}{ }^{\text {a* }}$ and Yoshiro Yamashita ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan, and
${ }^{\mathbf{b}}$ Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
Correspondence e-mail: tomura@ims.ac.jp

Received 5 January 2001
Accepted 28 February 2001

The title compounds, 4,4'-(ethyne-1,2-diyl)dipyridinium bis(squarate), $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{4} \mathrm{HO}_{4}^{-}$, and 4, 4^{\prime}-(ethene-1,2-diyl)dipyridinium bis(squarate), $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{4} \mathrm{HO}_{4}{ }^{-}$, are isomorphous and crystallize in space group $P \overline{1}$. The cocrystals contain linear hydrogen-bonded molecular tape structures along the [120] direction. The squarate monoanions form a tenmembered dimer linked by two intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Each component molecule forms a segregated stack along the c axis. The bond lengths of the squarate monoanion indicate delocalization of the enolate anion.

Comment

Squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione) is a very strong dibasic acid and has been studied for potential application to xerographic photoreceptors, organic solar cells and optical recording (Seitz \& Imming, 1992; Liebeskind et al., 1993). From the viewpoint of crystal engineering, squaric acid is also a useful tool for constructing crystalline architectures, because of its rigid and flat four-membered ring framework, and its proton donating and accepting capabilities for hydrogen bonding (Braga et al., 1999; Reetz et al., 1994). We have recently shown that the simple combination of chloranilic acid and various dipyridyl-type ligands can create a variety of supramolecular architectures involving an infinite one-dimensional molecular tape structure (Zaman et al., 1999, 2000). In the course of our crystal-engineering studies on the combination of squaric acid and dipyridyl-type ligands, we have obtained cocrystals of $4,4^{\prime}$-dipyridylacetylene-squaric acid (1/2), (I), and 1,2-bis(4-pyridyl)ethylene-squaric acid (1/2), (II), where a rare ten-membered hydrogen-bonded

[^0]dimer of a squarate monoanion is formed. We report here the structures of the resulting hydrogen-bonded molecular tapes.

(I)

(II)

Cocrystals (I) and (II) are isomorphous and crystallize in space group $P \overline{1}$, with one molecule of squaric acid and half a molecule of the dipyridyl-type ligand in the asymmetric unit. The molecular structures of (I) and (II) are shown in Figs. 1 and 2 , respectively, and selected geometric parameters are listed in Tables 1 and 2, respectively. The coordinates in (I) can be related to those in (II) by the transformation ($1-x, \frac{1}{2}-y$, $\frac{1}{2}-z$) subject to a permutation of the O labels; O1-O4 in (I) correspond to $\mathrm{O} 2-\mathrm{O} 4$ and O 1 , respectively, in (II). The molar ratio of the dipyridinium dication and the monoanion of squaric acid is 1:2 in both (I) and (II). The bond lengths in the squarate monoanion display delocalization of the enolate anion. Thus, the average bond lengths in the four-membered squarate frameworks are $1.421(5)(\mathrm{C} 1-\mathrm{C} 4, \mathrm{C} 3-\mathrm{C} 4)$ and 1.494 (5) $\AA(\mathrm{C} 1-\mathrm{C} 2, \mathrm{C} 2-\mathrm{C} 3)$ for (I), and 1.429 (2) ($\mathrm{C} 1-\mathrm{C} 2$, $\mathrm{C} 1-\mathrm{C} 4)$ and $1.495(2) \AA(\mathrm{C} 2-\mathrm{C} 3, \mathrm{C} 3-\mathrm{C} 4)$ for (II). The bond lengths of $\mathrm{O} 1-\mathrm{C} 1 \quad[1.255(4) \AA]$ and $\mathrm{O} 3-\mathrm{C} 3$ $[1.240$ (4) \AA ㄱ in (I), and $\mathrm{O} 2-\mathrm{C} 2[1.245$ (2) \AA] and $\mathrm{O} 4-\mathrm{C} 4$ [1.244 (2) \AA] in (II), are intermediate between a double and single bond. Such bond-length distribution has been found in cobalt and nickel squarate octahydrates (Brach et al., 1987)

Figure 1

The molecular structure of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii [symmetry code: (i) $1-x, 2-y, 3-z]$.

Figure 2
The molecular structure of (II) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii [symmetry code: (iii) $1-x,-1-y,-2-z]$.
and in L-argininium hydrogen squarate (Angelova et al., 1996). The dipyridinium dications of (I) and (II) lie in a plane, with maximum deviations of 0.003 (3) \AA for (I) and 0.004 (1) \AA for (II). The bond lengths in the dipyridinium moieties are similar to the literature values [Cambridge Structural Database (CSD), Version 5.20; Allen et al., 1987].

Figs. 3 and 4 show the packing diagrams of (I) and (II), respectively, viewed along the c axis. The squarate monoanions and the dipyridinium dications form an infinite onedimensional molecular tape structure along the [120] direction and are connected via an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond [$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 12.636$ (4) \AA for (I) and $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$ 2.655 (2) A for (II); see Tables 3 and 4]. The conformation of these molecular tapes is flat and almost linear. The squarate monoanions and the pyridine rings of the dipyridinium dications are almost coplanar [the dihedral angles between the two ring planes are 8.9 (2) ${ }^{\circ}$ for (I) and 10.2 (1) ${ }^{\circ}$ for (II)].

The most remarkable feature of the molecular tapes is the existence of a ten-membered hydrogen-bonded dimer of the squarate monoanions within the tapes. The two squarate monoanions are linked by two intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds [$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 3^{\text {ii }} 2.511$ (3) \AA for (I) and $\mathrm{O} 1-$ $\mathrm{H} 1 A \cdots \mathrm{O} 4^{\text {iv }} 2.503$ (2) \AA for (II); symmetry codes: (ii) $2-x$, $-y, 1-z$; (iv) $-x, 1-y,-z$] and are coplanar. The dimensions of the squarate dimer fit those of the dipyridyl-type ligands, as shown in Figs. 3 and 4. The squarate monoanion dimer is rare, and we have found only eight examples in the CSD (Angelova et al., 1996; Bernardinelli et al., 1989; Bock et al., 1998; Braga et al., 1999; Braga \& Grepioni, 1998; Kanters et al., 1991; Karle et al., 1996; MacLean et al., 1999). In all other

Figure 3
The packing diagram of (I) viewed along the c axis. Dotted lines show the intermolecular hydrogen bonds.
squarate structures, the squarate monoanions are linked by a single intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and no tenmembered rings are formed.

Each component molecule forms a segregated stack along the c axis. The interstack distances of the squarate plane and the dipyridinium plane for (I) and (II) are 3.21 (1) and 3.40 (1) Å, respectively. The flat conformation of the molecular tapes is favourable for close packing of the tapes and of the segregated stack.

Figure 4
The packing diagram of (II) viewed along the c axis. Dotted lines show the intermolecular hydrogen bonds.

In conclusion, the supramolecular synthon (Desiraju, 1995) formed by a combination of squaric acid and dipyridyl-type ligands has been successfully used in the construction of linear hydrogen-bonded molecular tapes. The strong resemblance between the crystal structures of (I) and (II) suggests the robustness and reproducibility of this supramolecular synthon. Studies of the characterization of the physical properties of the cocrystals (I) and (II), and of the construction of new molecular architectures using squaric acid and other dipyridyltype ligands, are now in progress.

Experimental

4,4'-Dipyridylacetylene was prepared according to the literature method of Tanner \& Ludi (1980). Squaric acid and 1,2-bis(4-pyridyl)ethylene were commercially available and were purified by standard methods. Slow evaporation of a solution of squaric acid (0.05 mmol) and the dipyridyl-type ligand $(0.05 \mathrm{mmol})$ in methanolwater ($1: 1,20 \mathrm{ml}$) gave crystals of (I) or (II) suitable for X-ray analysis.

Compound (I)

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{4} \mathrm{HO}_{4}{ }^{-}$
$M_{r}=408.32$
Triclinic, $P \overline{1}$
$a=10.221(2) \AA$
$b=12.325(3) \AA$
$c=3.7951(9) \AA$
$\alpha=97.24(2)^{\circ}$
$\beta=98.49(2)^{\circ}$
$\gamma=67.649(18)^{\circ}$
$V=436.06(18) \AA^{\circ}$

Data collection

Rigaku AFC-7R diffractometer $\omega / 2 \theta$ scans
2101 measured reflections
1992 independent reflections
788 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.141$
$S=0.92$
1992 reflections
160 parameters
$Z=1$
$D_{x}=1.555 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=13.1-14.8^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Prismatic, gold
$0.22 \times 0.15 \times 0.05 \mathrm{~mm}$

$$
\begin{aligned}
& h=0 \rightarrow 13 \\
& k=-14 \rightarrow 15 \\
& l=-4 \rightarrow 4 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \text { intensity decay: } 0.8 \%
\end{aligned}
$$

All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0564 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.26 \mathrm{e}^{-3}$

Compound (II)

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} .2 \mathrm{C}_{4} \mathrm{HO}_{4}$
$M_{r}=410.33$
Triclinic, $P \overline{1}$
$a=10.2606$ (9) \AA
$b=12.2942(17) \AA$
$c=3.7749$ (13) \AA
$\alpha=97.845(17)^{\circ}$
$\beta=98.444$ (13) ${ }^{\circ}$
$\gamma=67.259(8)^{\circ}$
$V=432.75(17) \AA^{3}$
$Z=1$
$D_{x}=1.575 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 22 reflections
$\theta=13.9-42.6^{\circ}$
$\mu=1.06 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Prismatic, yellow
$0.25 \times 0.10 \times 0.08 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffract-	$R_{\text {int }}=0.009$
\quad ometer	$\theta_{\max }=74.2^{\circ}$
$\omega / 2 \theta$ scans	$h=-12 \rightarrow 12$
Absorption correction: ψ scan	$k=-15 \rightarrow 15$
$\quad($ North et al., 1968$)$	$l=0 \rightarrow 4$
$T_{\min }=0.778, T_{\max }=0.920$	3 standard reflections
2052 measured reflections	frequency: 120 min
1771 independent reflections	intensity decay: 2.9%
1468 refloctions with $I>2 \sigma(I)$	

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0919 P)^{2}\right. \\
\quad+0.0683 P] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }= \\
=0.30 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{O} 1-\mathrm{C} 1$	$1.255(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.505(5)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.215(4)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.427(5)$
$\mathrm{O} 3-\mathrm{C} 3$	$1.240(4)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.383(4)$
$\mathrm{O} 4-\mathrm{C} 4$	$1.306(4)$	$\mathrm{C} 5-\mathrm{C} 9$	$1.397(4)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.328(4)$	$\mathrm{C} 5-\mathrm{C} 10$	$1.436(5)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.329(4)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.367(5)$
$\mathrm{C} 1-\mathrm{C} 4$	$1.415(4)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.377(5)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.483(5)$	$\mathrm{C} 10-\mathrm{C} 10^{\mathrm{i}}$	$1.181(6)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$122.3(3)$	$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 3$	$136.5(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 4$	$136.6(3)$	$\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 3$	$93.5(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$133.3(3)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 9$	$119.4(3)$
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2$	$90.0(2)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10$	$119.2(3)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	$135.0(3)$	$\mathrm{C} 9-\mathrm{C} 5-\mathrm{C} 10$	$121.4(3)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$137.3(3)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$119.1(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$87.7(3)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$120.4(3)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	$138.2(3)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$120.3(3)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	$133.1(3)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 5$	$118.4(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$88.7(2)$	$\mathrm{C} 10^{\mathrm{i}}-\mathrm{C} 10-\mathrm{C} 5$	$176.2(6)$
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 1$	$130.0(3)$		

Symmetry code: (i) $1-x, 2-y, 3-z$.

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	$0.98(4)$	$1.68(4)$	$2.636(4)$	$165(3)$
$\mathrm{O} 4-\mathrm{H} 4 \cdots 3^{\mathrm{ii}}$	$1.04(5)$	$1.52(5)$	$2.511(3)$	$157(4)$

Symmetry code: (ii) $2-x,-y, 1-z$.
Table 3
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (II).

$\mathrm{O} 1-\mathrm{C} 1$	$1.3138(19)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.491(2)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.2453(19)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.499(2)$
$\mathrm{O} 3-\mathrm{C} 3$	$1.215(2)$	$\mathrm{C} 5-\mathrm{C} 9$	$1.394(2)$
$\mathrm{O} 4-\mathrm{C} 4$	$1.2440(19)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.400(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.340(2)$	$\mathrm{C} 5-\mathrm{C} 10$	$1.470(2)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.342(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.369(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.425(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.378(2)$
$\mathrm{C} 1-\mathrm{C} 4$	$1.432(2)$	$\mathrm{C} 10-\mathrm{C} 10^{\mathrm{iii}}$	$1.320(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$121.94(13)$	$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 3$	$133.73(14)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$130.32(14)$	$\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 3$	$88.84(12)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 4$	$136.15(14)$	$\mathrm{C} 9-\mathrm{C} 5-\mathrm{C} 6$	$118.14(14)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4$	$93.53(12)$	$\mathrm{C} 9-\mathrm{C} 5-\mathrm{C} 10$	$119.34(14)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	$136.23(14)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10$	$122.51(14)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$134.37(14)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$119.41(15)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$89.40(12)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$120.71(14)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	$135.13(15)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$119.52(14)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	$136.64(15)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 5$	$120.27(14)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$88.22(11)$	$\mathrm{C} 10^{\mathrm{iiii}}-\mathrm{C} 10-\mathrm{C} 5$	$125.34(19)$
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 1$	$137.42(14)$		

Symmetry code: (iii) $1-x,-1-y,-2-z$.

Table 4
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$ for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $A \cdots \mathrm{O}^{\text {iv }}$	$0.99(2)$	$1.56(2)$	$2.5033(17)$	$156(2)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$	$1.02(3)$	$1.64(3)$	$2.6546(17)$	$170(2)$

[^1]All H atoms in both (I) and (II) were located in the Fourier map and were refined isotropically; the $\mathrm{C}-\mathrm{H}$ ranges are 0.91 (3)-0.95 (4) and 0.96 (2)-0.99 (2) \AA for (I) and (II), respectively.

For compound (I), data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software. For compound (II), data collection: CAD-4 EXPRESS (Enraf-Nonius, 1995); cell refinement: CAD-4 EXPRESS. For both compounds, data reduction: TEXSAN (Molecular Structure Corporation, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

MBZ thanks the Institute for Molecular Science for postdoctoral fellowships. This work was supported by a Grant-inAid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1134). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Angelova, O., Velikova, V., Kolev, T. \& Radomirska, V. (1996). Acta Cryst. C52, 3252-3256.

Bernardinelli, G., Deguenon, D., Soules, R. \& Castan, P. (1989). Can. J. Chem. 67, 1158-1165.
Bock, H., Schodel, H., Van, T. T. H., Dienelt, R. \& Gluth, M. (1998). J. Prakt. Chem. 340, 722-732.
Brach, I., Rozière, J., Anselment, B. \& Peters, K. (1987). Acta Cryst. C43, 458460.

Braga, D., Bazzi, C., Maini, L. \& Grepioni, F. (1999). CrystEngComm, No. 5.
Braga, D. \& Grepioni, F. (1998). Chem. Commun. pp. 911-912.
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.
Enraf-Nonius (1995). CAD-4 EXPRESS. Version 5.1. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kanters, J. A., Schouten, A., Kroon, J. \& Grech, E. (1991). Acta Cryst. C47, 807-810.
Karle, I. L., Ranganathan, D. \& Haridas, V. (1996). J. Am. Chem. Soc. 118, 7128-7133.
Liebeskind, L. S., Yu, M. S., Yu, R. H., Wang, J. \& Hager, K. S. (1993). J. Am. Chem. Soc. 115, 9048-9055.
MacLean, E. J., Wheatley, P. S., Ferguson, G. \& Glidewell, C. (1999). Acta Cryst. C55, 1892-1896.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1995). TEXSAN. Version 1.7-2. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Reetz, M. T., Höger, S. \& Harms, K. (1994). Angew. Chem. Int. Ed. Engl. 33, 181-183.
Seitz, G. \& Imming, P. (1992). Chem. Rev. 92, 1227-1260.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tanner, M. \& Ludi, A. (1980). Chimica, 34, 23-24.
Zaman, M. B., Tomura, M. \& Yamashita, Y. (1999). Chem. Commun. pp. 9991000.

Zaman, M. B., Tomura, M. \& Yamashita, Y. (2000). Org. Lett. 2, 273-275.

[^0]: \dagger Present address: Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA.

[^1]: Symmetry code: (iv) $-x, 1-y,-z$.

